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This paper provides a description of research seeking to experimentally verify the 
effectiveness of a thermal switch used in series with TE devices for waste heat recovery for 
constant and variable source heat input and for variable source thermal capacitance (mass).  
Using an experimental set-up comprised serially of a fixed heat source, a variable thermal 
resistance air gap serving as a thermal switch, a thermoelectric device and a heat sink, the 
time-averaged power output to power input ratios improved up to 15% and 30% 
respectively for constant and variable heat input in certain design space conditions.  The 
experimental results, as supported by model predictions, suggest that the thermal 
capacitance of the heat source must be greater than the thermal capacitance of the TE device 
in order for thermal switching to improve the time-averaged power output to power input 
ratios of waste heat recovery systems. The results have direct application to aircraft energy 
harvesting.  

Nomenclature 
C Thermal Capacitance (J/kg-K) 
Q  Heat dissipation (W) 
PR  Output power to input power ratio (%) 
P  Output power from TE device (W) 
R Thermal resistance (K-m2/W) 
T Temperature (oC) 
ZT Thermoelectric device figure of merit 
k Thermal conductivity (W/m-K) 
t Time (sec) 
x Distance (m) 
 
Subscripts 
HIGH  High resistance setting of thermal potentiometer 

                                                           
1 Graduate Research Assistant, Mechanical and Aerospace Engineering, 300 College Park. 
2 Deputy Team Lead, Department Name, 2210 Eighth Street. 
3 Chair and Professor, Mechanical and Aerospace Engineering, 300 College Park. 
4 Team Lead, AFRL/VAS, 2210 Eighth Street, AIAA Associate Member. 
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IN  Input into system 
LOW  Low resistance setting of thermal potentiometer 
TE Thermoelectric device 
TE,H Hot side of thermoelectric device 
TE,L Cold side of thermoelectric device 
h Heat sink heat exchanger 
nc No Control 
p Thermal potentiometer 
s Heat source 
sink Heat sink 

I. Introduction 
ecently breakthrough developments in thermoelectric devices have been reported showing increases in the  ZT 

value for thermoelectric (TE) device materials from 1 up to 5 [1-3].  Bell illustrated that surpassing the threshold ZT 

of 2 in a cost effective manner can enable significant usage of TE energy harvesting to convert waste heat in an 

automobile engine exhaust into electrical power [4].  Recently, Fairbanks noted that further improvements in ZT to 

approximately 10 could make TE power conversion competitive with the internal combustion engine [5].  Finally, 

Elder et al. stated that for automotive applications, TE utilization is possible if the module cost is brought down to 

approximately $0.10/W and a ZT-value above 3 can be achieved over a broad temperature range [6]. 

 R

Relative to aircraft energy harvesting from power electronics, Hallinan et al. [7] showed that TE technology is 

already at a state where positive system level impact can be realized. 

Transient behavior of the thermal-electrical energy conversion processes in TE devices for use in heat pumps has 

been a well studied topic [8-12].  As a cooler, the TE device instantly adsorbs electric energy at the p-n junctions 

when current is applied.  Simultaneously, Joule heating results, but this thermal energy diffuses towards the p-n 

junction at a much slower rate than the electron flow.  As a result, the TE device performance is temporarily 

enhanced until the Joule heating effects reach steady-state.  When the TE device operates as a generator, Joule 

heating diffusion begins at the p-n junction when a temperature difference is applied across the device.  Almost 

instantaneously, electrical energy adsorption commences, thus temporarily degrading the TE device performance 

until Joule heating reaches steady-state.  For a typical bismuth telluride TE device, the transient effects occur for 

very small time durations on the order of 0.2 seconds, substantially lower than the time periods considered here. 

The baseline waste heat recovery system without thermal switch source temperature modulation, shown 

schematically in Fig. 1 is proposed to harvest waste heat from a constant or variable heat source using TE devices.  

In this figure, illustrative source temperatures and power dissipation are plotted as a function of time. Also noted is 

the maximum allowable source temperature.  In practice, this system must be designed for worst case heat input 
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scenarios due to variations in source heat output, sink temperature and thermal resistance, and manufacturing.  This 

conservative design can force the system to operate well below the maximum temperature of the source, therefore 

reducing the temperature drop across the TE device and thus lowering the efficiency of the system.  In order to 

compensate for these variations, the waste heat recovery system shown schematically in Fig. 2 is proposed to 

maximize the thermoelectric energy recovery from the system through the addition of a thermal switch, located 

between the source and the TE device.  Again, in this figure, source temperature and power into the TE device are 

plotted as a function of time.  The thermal switch ideally has controllable thermal resistance.  As shown in the 

representative plot, when the heat input is near maximum, the thermal resistance of the thermal switch is set to a 

minimum to prevent the source from exceeding its maximum temperature.  In this state the heat flows freely into the 

TE device, maximizing the temperature drop across the TE device and the efficiency of the energy harvesting 

system.  When the heat input is off-peak, the thermal resistance is increased to dominate the thermal resistances in 

the system forcing energy storage in the heat source, thus causing an increase in a source temperature.  In this state 

very little heat ideally flows through the TE device.  Once the source temperature reaches the maximum operating 

temperature, the thermal resistance of the switch is once again minimized.  This sequence of events repeats to allow 

greater work to be extracted from the system by restricting heat to flow through the TE device only during 

maximum source temperature and therefore maximum temperature drop across the TE device.  This control results 

in greater time-averaged power output to power input ratios ( ).   PR

 time 

TE Device 

Sink 

Source Ts,max

Ts,max - ΔTs

TSource P

T 
P 

Fig. 1 Physical model of energy harvesting system without a thermal switch. 
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Fig. 2 Physical model of energy harvesting with a thermal switch. 

In previous research, a finite difference analytical approach with source temperature feedback was used to 

evaluate the potential of source temperature modulation with a thermal switch on TE power output.  The analytical 

model demonstrated that maximizing the exergy of the source, by maximizing its temperature during off-peak heat 

loadings, is capable of improving the time-averaged power output to power input ratio ( ) of a TE device.  For 

some conditions, improved time-averaged power ratios of more than four times were realized.  Criterion defining the 

operation space where power ratio improvements were developed. [13] 

PR

II. Experiment 

To experimentally investigate the effects of a thermal switch on the waste heat recovery system, an experimental 

set-up comprised serially of a fixed heat source, a variable air gap serving as a thermal switch, a thermoelectric 

device and a heat sink mounted on a translation stage was employed.  A schematic of this system is shown in Fig. 3.  

This set-up consists of a fixed heat source (silicon heater pad) attached to an aluminum or copper heat-spreader to 

simulate waste heat.  This heat source assembly is mounted to a fixed plate located above a lower assembly that rests 

on a scissor jack driven by a stepper motor thereby permitting the lower assembly to be traversed up and down.  

Resting on top of the scissor jack, the TE device (Hi-Z HZ-2 Thermoelectric Module) is sandwiched between heat 

flux sensors and thermocouples.  The heat sink, which is constructed of a copper plate with embedded tubing 

connected to a cooling bath pumping a 70/30 mixture of glycol to distilled water near -20°C, rests on top of the 

scissor jack.  To represent the thermal switch in the high thermal resistance state, the stepper motor drives the scissor 

jack down until a desired air gap distance of 8 mm is achieved.  Thus the high thermal resistance state is associated 

with conduction, radiation, and convection across the air gap.  To represent the thermal switch in the low thermal 

resistance setting, the stepper motor drives the scissor jack up until the TE device is firmly pressed against the heat 

source assembly.  When closed, the low thermal resistance between the heater assembly and the TE device is 
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dominated by the contact resistance between the TE device and heater spreader.  Gentle pressure between heat 

source and TE device, achieved by application of a weight atop the “floating” heat source, ensures adequate thermal 

contact between the heater spreader and TE device. 

Motor

TE Device

Heater PadHeater Spreader

Heat Sink 

Air 

Scissor Jack 

 

Fig. 3 Variable air-gap experiment set-up schematic. 

The goal of this investigation is to determine the improvement of time averaged overall TE device power output 

to power input ratio ( ) for a waste heat recovery system with a thermal switch and compare it to a similar system 

without a thermal switch.  The power ratio for the system ( ) is defined as the ratio of time averaged power 

generated by the TE device to the power into the system in the form of heat from the source as shown by equation 

(1). 

PR

PR
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The power ratio improvement due to switching is given by equation (2). 

 
PR Improvement

controlno

controlnoswitching

PR
PRPR

_

_−
=  (2) 

Experiments were conducted for both constant heat and variable heat input.  For the constant heat input tests, 

once the circulator (heat sink) reached a constant temperature, the heater pad (heat source, ) was set to a constant 

power setting to ensure that the source temperature with no thermal switching was 119 +/- 0.6 °C at the low thermal 

resistance setting.  The air gap was set to zero guaranteeing firm contact between the heater assembly and the TE 

device.  In this condition, the system achieved steady state (+/- 0.1 °C) prior to recording data to establish the system 

performance for no switching.  Once this baseline was established, switching was employed by opening the air gap 

to a distance of 8 mm and monitoring the source temperature.  Once the source temperature reached 158.5 +/-0.6°C, 

inQ&
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the gap was once again zeroed.  When the source temperature reached the lower bound, defined as -max,sT sTΔ , the 

air gap was again set to 8 mm and the process was repeated.  The output power from the TE device was sampled 

every one second and the overall power ratio, , was calculated. PR

The variable heat input test began by determining the baseline, no control data set for a heat input described by 

equation (3). 

 
⎟
⎠
⎞

⎜
⎝
⎛ +=

•
•

)
2

sin(1
2
max tfQ

Qin π
 (3) 

where  was always set to 44 W and the frequency, , was varied for each test.  After the baseline was 

established, switching was employed as described above in the constant heat input test procedures. 

maxQ& f

 

III. Experimental Results 

A. Constant Heat Input 

For the constant heat input test, the ratio between the maximum source temperature for switching and the steady-

state source temperature (no switching) was maintained at 1.333 by adjusting the heat input to the system. This ratio 

was set to mirror a safety factor built into design of a thermal management system.   

The thermal resistances, capacitances, temperatures and thermoelectric properties were kept constant throughout 

the constant heat source test as summarized in Table 1.   

Three source thermal capacitances were tested to determine the effects of source thermal capacitance on power 

ratio improvements.  For each source capacitance tested, several different source temperature ranges,  

Tmax < Ts < Ts - ,were considered in an effort to find the sTΔ sTΔ  for each particular source capacitance which 

resulted in the greatest output power ratio for energy harvested.   

Table 1 Physical and spatial variables that remain fixed for all constant heat input experimental cases 
studied. 

Variable Value 
25 J/oK TEC  
2.5 oK/W TER  
119 +/- 0.6 oC steadysT ,  

158.5 +/- 0.6 oC max,sT  

SINKT  -18.5 +/- 1.0 oC 
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1.75 oK/W LOWPR ,  
120 oK/W HIGHPR ,  
~∞ J/oK SINKC  
~0 oK/W SINKR  
0.1 effZT  

 

As seen in Table 1, the effective ZT of the TE device was determined experimentally and is significantly lower 

than the company’s published value of 1 [14], most likely due to the mounting procedures used in this test.   

Figure 4 shows a plot of output power ratio improvement as a function of source temperature for the three source 

capacitances tested.  As can be seen from the figure, an optimal sTΔ exists for each source capacitance considered.  

If the  value is too small, the time that the source is in contact with the TE device (energy is being harvested), 

, is small in comparison to the time the source is not in contact with the TE device (no energy harvested), , as 

seen in Fig. 5.  If  is too large, the source temperature drops to the point of degrading the output power of the 

TE device, as is observable in Fig. 6.   
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Fig. 4 Power output ratio improvements for constant heat input and C  = 38.5, 100, and 300 KJ o  as a 
function of sTΔ . 
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Fig. 5 Source temperature and TE output power for Case 2 with sTΔ  = 10°C. 
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Fig. 6 Source temperature and TE output power for Case 2 with sTΔ  = 25°C. 

 
Table 2 shows the optimal  for each source capacitance tested.  As the source thermal capacitance increases 

relative to the TE device thermal capacitance, the output power ratio improvement increases.  Larger source 

capacitances allow the source to store more thermal energy when the thermal switch resistance is high.  When the 

thermal switch resistance is low, more thermal energy can be forced through the system.  When the thermal 

capacitance of the TE device is small in comparison to the source, relatively little energy is stored in the TE device, 

and thus the heat dissipated from the TE device when the thermal switch is off (at lower average temperature 

differences) is relatively small.  The ratio of source contact time with the TE device, , divided by time the source 

is not in contact with the TE device,   at optimal 

sTΔ

ont

offt sTΔ  conditions is given as offon tt .  In all cases, for the 

experiments conducted the optimal on time versus off time ratio is about 1.  This result is not a general rule, but a 

function of the experimental conditions.  Experimental uncertainty of time-averaged power ratio improvement for 

the system was determined to be  0.17% and is reflected in the  improvement measurements. ± PR
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Table 2 Summary of the optimal experimental power output ratio improvements for constant heat input and 
variable source capacitance. 

Case 
inQ

•
 

(W) 
SC  

J/oK 
optsT ,Δ  

(°C) 
offon tt

 
Max PR 
Improvement (%) 

1 27 38.5 25 1.01 2.17 ±0.17% 
2 27 100 20 1.07 12.91 ±0.17% 
3 32.7 300 20 1.01 14.84 ±0.17% 

 

B. Variable Heat Input 

For the variable heat input tests, the heat source capacitance was constant for all cases but the sinusoidal heat 

source input frequency was varied.  Table 3 shows the fixed thermal resistances, capacitances, temperatures and 

thermoelectric properties for these tests. The frequency was changed from 0.003 Hz to 0.0003 Hz in order to better 

understand the effects of heat input frequency on . PR

Table 3 Physical and spatial variables that remain fixed for all variable input experimental cases studied. 

Variable Value 
44 W 

max

•
Q  

100 J/oK SC  
25 J/oK TEC  
2.5 oK/W TER  
160 +/- 0.6oC max,sT  
-18.8 +/- 1.0 oC SINKT  
1.75 oK/W LOWPR ,  
120 oK/W HIGHPR ,  
~∞ J/oK SINKC  
~0 oK/W SINKR  
0.1 ZT  

 

To find the optimal output power ratio at each thermal load frequency, sTΔ  was varied until a maximum power 

improvement ratio was determined.  As can be seen from Table 4, as the frequency decreases, the maximum source 

temperature without control, , increases.  Additionally, the output power ratio improvement was best in 

Case 2 for a frequency of 0.000556 Hz and 

ncsT max,,

sTΔ =20°C.  In Case 1, the high frequency heat input prevented the heat 

source from fully reaching its maximum value, therefore the power ratio improvement is degraded.  In Case 3, the 

frequency is low enough that the non-negligible energy stored in the TE device is lost during open switch 
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conditions. This heat dissipation from the TE device during this period is associated with an effectively low 

temperature drop across the TE device, thus degrading the time-averaged power ratio improvement.  One can 

conclude that the optimal frequency for energy harvesting for transient heat input would depend on the thermal 

capacitances of the source, TE device and the sink.  If the thermal capacitance of the TE device is negligible, lower 

frequencies would produce more beneficial results with thermal switching. 

Table 4 Summary of the experimental power output ratio improvements for variable heat input. 

Case f (Hz) 
ncsT max,,  

(C) 
optsT ,Δ  

(°C) off

on

t
t  

PR 
Improvement 
(%) 

 1 0.00333 102 20 0.472 20.00 ±0.17% 
 2 0.00056 130.6 20 0.517 30.04 ±0.17% 
 3 0.00028 150.8 30 0.630 25.82 ±0.17% 

 

IV. Analysis 

Building upon previous work of McCarty et al. [13], a finite difference thermal RC equivalent model of the TE 

energy recovery system, shown schematically in Fig. 7, was employed and can be compared experimental results. 

A. Constant Heat 

Using this finite difference model, the following thermal resistances, capacitances, temperatures and 

thermoelectric properties were kept constant throughout the constant heat source simulation, in an effort to represent 

the experimental set-up conditions, as shown in Table 5. 

Table 5 Physical and spatial variables that remain fixed for all constant heat input simulated cases studied. 

Variable Value 
25 J/oK TEC  
2.5 oK/W TER  
118.8 oC steadysT ,  

160 oC max,sT  
-20 oC SINKT  
0.001 oK/W LOWPR ,  
1,000 oK/W HIGHPR ,  
100,000 J/oK SINKC  
0.0005 oK/W SINKR  
0.1 effZT  
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The finite difference model was used to predict the behavior of the waste heat recovery system with three 

different heat source thermal capacitances.   was adjusted until the steady-state source temperature was 119 +/- 

0.6°C.  For each case studied,  was varied until a maximum power ratio was determined analytically.   

inQ&

sTΔ

Table 6 shows the results for the analytical model with constant heat input.  The  necessary to achieve a 

steady-state source temperature of 119 °C was higher than compared to the experiment due to the differences in 

thermal resistances of the source and sink.  The ratio of the source contact time, 

inQ&

offon tt , was slightly different for 

the analytical model due to the differences in experimental heat losses of the system.  In both the analytical model 

and experiment results, the power ratio improvements increased as the thermal capacitance of the source increased. 

While the magnitude of the improvement was different, the trends were consistent. 

Table 6 Summary of simulated power output ratio improvements for constant heat input. 

Case 
inQ

•
 

(W) 
SC  

J/oK 
sTΔ  

(°C) off

on

t
t  

Analytical 
PR Imp. 

(%) 

Exp. 
PR Imp. 

(%) 
2.17 

±0.17% 1 55.5 38.5 30 1.14 2.41% 
12.91 

±0.17% 2 55.5 100 25 1.5 8.03% 
14.84 

±0.17% 3 55.5 300 20 2.5 21.63% 
 

V. Capacitance Effects 
For the constant heat input experiments, it was noticed that as the source thermal capacitance increased at 

constant TE thermal capacitance, the output power ratio increased for both the experiment and finite difference 

simulation.  To further investigate this phenomenon, the effect of different capacitance ratios, defined as the source 

thermal capacitance divided by the TE device thermal capacitance, on power output ratio was investigated.  As can 

be seen from Fig. 8, increasing the capacitance ratio increases the output power ratio of the system with thermal 

switch control.  Notably, when the thermal capacitance of the TE device is greater than the source, controlled 

thermal switching has no beneficial effect.  For this case, heat transfer to the TE device causes significant thermal 

energy storage in the TE device.  Thus, when the thermal resistance of the thermal switch is high, the thermal energy 

storage in the TE device is released at a smaller effective temperature drop across the device thus reducing overall 
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performance.  Therefore the source thermal capacitance must be greater than the TE device thermal capacitance in 

order for thermal switching to be beneficial in waste heat recovery systems. 
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Fig. 7 Finite difference model and experimental power output ratio improvements as a function of thermal 
capacitance ratio. 

VI. Comparison Between Model and Experimental Results 

A plot of the source temperature and TE output power for the finite difference model with constant heat input is 

shown in Fig. 9a.  A similar plot with the experimental data is shown in Fig. 9b. These plots for both the finite 

difference model and experiment for comparable input parameters are very similar.  The finite difference model 

shows a maximum power ratio of 1.5%, with overall power improvement ratios increased by 21.6%.  The maximum 

power ratio of the experimental system was 1.2%, with overall power improvement ratios increased by 14.8%.  This 

discrepancy results from the finite difference model not accounting for the experimental heat loss to ambient.  Also, 

the time required for the source temperature to reach its maximum allowable temperature for the analytical model is 

nearly 20% of the experiment because the of heat losses to the ambient during open state conditions in the 

experiments. 
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Fig. 8 Finite difference constant heat input for Case 3, =55.5 W, =300 inQ& sC KJ o , and =160°C. max,sT
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Fig. 9 Experimental constant heat input results for Case 3, =27 W, =300 inQ& sC KJ o , and =160°C. max,sT

 

VII. Projected Results for State of the Art TE Device 

While the  improvements in the previous sections were notable, the overall efficiencies were still low 

because of the effective ZT of the TE used in the experiment.  In order to better understand the effects of thermal 

switching for waste heat recovery systems with state-of-the-art TE devices, results for a state of the art TE device 

can be projected using the experimentally verified analytical model.  For a waste heat recovery system operating at a 

maximum source temperature of 160°C, a source capacitance of 100 J/

PR

oK, a TE capacitance of 1 J/oK, and a ZT of 3, 
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the overall power output ratio could improve by more than 35% with a thermal switch as predicted by the finite 

difference model. 

VIII. Conclusion 

Both constant and variable heat inputs were tested experimentally using the variable air gap set-up.  For constant 

heat input, several different heat source capacitances were considered.  The sensitivity of changes in these 

parameters on the time-averaged efficiency was determined.  For the variable heat input, several different heat input 

frequencies were also evaluated.  Experimental power ratios for constant heat input improved up to 15% and for 

variable heat input improved up to 30% in certain design space conditions.   

 

The experimental results provided in this paper prove that thermal switching can improve the performance of 

waste heat recovery systems that use TE devices.  Also, the source thermal capacitance must be greater than the 

thermal capacitance of the TE device for thermal switching to improve output power recovered from a waste heat 

recovery system.  Additionally, the experimental results verified the effectiveness of the analytical finite difference 

model developed in previous work.  Finally, the analytical model predicted that thermal switching could boast a 

state-of-the-art waste heat recovery system output power ratio by 35% for constant heat input in certain design space 

conditions. 
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